Ambiguous Genitalia

By Dr David Segal Paediatric Endocrinologist

What is the sex of the baby?

- Genetic: XX, XY or other
- **Gonadal**: Testes, ovaries, ovotestes, other
- **Phenotypic**: Male genitalia, female genitalia, ambiguous genitalia
- Gender identity: the gender felt by the individual to be most accurate
- Gender role: gender typical behaviours

SEX Determination

- -Gonads
- -Internal genital structures
- -External genital structures
- All develop from bi-potential embryonic tissues

 Determination and differentiation depend on the regulated expression and interaction of specific genes and their gene products

- Sex determination:
 - Sex chromosome to gonadal differentiation
 - Sex determination sets the stage for sex differentiation
- Sex differentiation:
 - Sex-specific response of tissues to hormones produced by the gonads

The Players

Primordial germ cells

Primordial germ cells

Gonadal differentiation

Syndromes of Dysgenesis during the Development of the Urogenital Ridge.

NEJM 350;4 january 22, 2004

Disorders of Differentiation

NEJM 350;4 january 22, 2004

Genitalia 7 weeks Indifferent stage

Female external genitalia development

Male sexual differentiation

Development of male external genitalia

Development of male external genitalia

Gonadal dysgenesis

- Spectrum of disorders leading to maldevelopment of the gonads
 - 46XY pure gonadal dysgenesis
 - Multiple cell lines including a monosomy X mixed gonadal dysgenesis-most often 45,X/46,XY
 - True hermaphrodite often 46,XX/46,XY
 - 46,XX males, 46,XY females

XO/XY/XXY mixed/asymmetric gonadal dysgenesis

16y old female, short stature and sexual infantilism 46,XY asymmetric gonadal dysgenesis

Pure gonadal dysgenesis

14y old female

45,X/46,XY

Short stature

Bilateral streak gonads

Deletion syndrome 45,X/46,XY

A 15-year-old female

45,X/46,X,idic(Y)/47,XY,+idic(Y)

Short stature

Clitoromegaly

Right streak gonad Left immature testis.

2-mo old female

45,X/46,XY

Frank sexual ambiguity

Clitoromegaly

Right scrotal gonad Empty left labioscrotal pouch

Gonadectomy and reduction clitoroplasty

Gonadectomy and reduction clitoroplasty

Gonadectomy and reduction clitoroplasty

46,XY Gonadal dysgenesis

19-y old female

46,XY

Normal stature

Sexual infantilism

Endocrine profile of primary gonadal failure

46,XY gonadal dysgenesis with calcified gonoblastoma

Salient features of the empty pelvis/agonadia/vanishing testes syndrome

C. Salient Features of the Empty Pelvis/Agonadia/Vanishing Testes Syndrome

Karyotype:	46, XY			
Inheritance:	Sporadic; possibly autosomal recessive in familial cases			
Gonads:	Absent (CT, laparoscopy)			
Habitus:	Sexual infantilism at puberty			
Hormone profile:	? plasma FSH and LH, and minimal testosterone			
	Testicular Regression Before 8 Weeks	Testicular Regression Between 8 and 10 Weeks	Testicular Regression After 12 to 14 Weeks	Incomplete Regression After 12 to 14 Weeks
Genitalia	Female	Ambiguous	Male	Micropenis
Wolffian duct derivatives	Absent	Complete absence to partial development	Present	Present
Müllerian duct derivatives	Female	Complete absence to partial development	Absent	Absent
Gonads	Absent	Absent	Absent	Rudimentary testes

True Hermaphroditism/ Ovotesticular DSD

True hermaphroditism

Undervirilized male Male Pseudohermaphrodite

Absent Uterus 46,XY

Spectrum of Undervirilization

Testosterone block in male sex determination

Enzymatic defects in biosynthetic pathway for testosterone

Salient features in Androgenic steroid disorders

	P450scc	3bHSD	17OH	17 bHSD
Karyotype	XY	XY	XY	XY
Inheritance	AR	AR	AR	AR
Gonads	TESTES	TESTES	TESTES	TESTES
Wolfian	-	NL	NL	NL
Mullerian	ABSENT	ABSENT	ABSENT	ABSENT
Genitalia	*	1	1	1
Habitus	Adrenal Insufficiency	Adrenal Insufficiency	Hypertension	

Male pseudohermaphroditism from 5a-reductase deficiency

5a-Reductase deficiency

- AR Mutation in 5aR2 gene
- Impaired conversion of T to DHT in target tissues
- Impaired development of penis, scrotum, urethra and prostate
- At birth, ambiguous genitalia with hypospadic phallus and blind vaginal pouch, normal testes
- At puberty virilize without gynaecomastia

46,XY karyotype with 5a-reductase deficiency

Prepubertal "girl"

Post-pubertal boy

Complete androgen insensitivity

18y old "female"

Tanner V breast

Absent Pubic hair

Blind vagina

46,XY

Male pseudohermaphroditism from androgen resistance

Persistent Mullerian duct syndrome

Persistent Mullerian Duct Syndrome (Hernia uteri inguinale)

• 46 XY

- Male genitalia
- Undescended testes
- X-linked recessive

U.M. Utriculus masculinus

Congenital Adrenal Hyperplasia

Basics

- 21-OH def (CYP21) 95% of cases
 - Salt-wasting
 - Simple virilizing
 - Non-classic (late onset)
- 11-OH (CYP11)
- 3b-HSD

Congenital Adrenal Hyperplasia

CAH- 21-OH deficiency

Spectrum of Masculinization of female external genitalia

Spectrum of virilization CAH

Figure 2: Spectrum of virilisation of a female. (46 XX with CAH)

21-Hydroxylase (P-450_{c21}) deficiency

18y old gender identity concern

The Incidence of Intersexuality in children with Cryptorchidism and Hypospadius

Martin Kaefer et al, The Journal of Urology 1999

- Cryptorchidism
 - 1/30 full-term
 - 1/120 1 year olds
- Hypospadius 1/300
- Children with hypospadius and cryptorchidism have a 27% incidence of intersexuality
- Both are due to inadequate androgen action

Cryptorchid testes

Non-palpable

Hypospadius

• Hypospadius

- Anterior
 - Glanular
 - Coronal
- Mid
 - distal penile
 - proximal mid shaft

– Posterior

- Penoscrotal
- Scrotal
- Perineal

47XXY = 2

PAIS = 3

Vanish testes = 1
Meatal Position

Meatal position anterior (33%)

mid (26%)

Intersex 8%

5%

Posterior (41%)

65%

Fig. 1 Pelvic ultrasound in a female pseudohermaphrodite with congenital adrenal hyperplasia showing hydrocolpos consistent with a urogenital sinus malformation.

Fig. 3 — Ultrasound in a female pseudohermaphrodite with congenital adrenal hyperplasia shows an calarged adrenal gland.

Ambiguous Genitalia

What to do?

- Call for help
- Karyotype
- Urgent electrolytes
- 17-OHP, DHEAS, androstenedione, testosterone, DHT
- US
- Genitogram
- HCG stimulation
- ACTH stimulation test
- MIS
- Call for help

Management

- Specialist team
 - Paediatrician (endocrinologist)
 - Surgeon
 - Genetics
 - Parents

Issues

- Sex assignment
- Surgery
 - -Y/N
 - Timing
- Follow-up
- Disclosure

Tying it all together

To prevent this

Tying it all together

- Team decision
- Based upon all the facts
- Parental wishes
- Adult sexual function
 - The brain is the most important sex organ
- Reproductive capacity
- Gender identity
- Physical characteristics and potential for growth/function

Questions?

Target DNA bending

X-Y recombination during paternal meiosis

Undifferentiated sexual system

Classifications for patients with abnormalities of sexual differentiation

B. Two Classifications for Patients with Abnormalities of Sexual Differentiation

Original Classification	New Classification
Male pseudohermaphroditism	1. Deletion syndromes with Y cell lines (45, X/46, XY)
	2. 46, XY
	a. Gonadal dysgenesis (Swyer's syndrome)
	b. Empty pelvis: agonadia
	c. Enzyme deficiencies
	Enzyme deficiencies affecting both adrenals and testes (variants of
	CAH)
	Cholesterol side-chain cleavage (P-450 _{scc}) deficiency
	—17à-hydroxylase (P-450 _{c17}) deficiency
	Enzyme defects primarily affecting the testes
	—P-450 _{c17} hydroxylase/17,20-lyase deficiency
	—17ß-hydroxysteroid dehydrogenase (17-HSD) or 17ß-kerasteroid reductase deficiency
	5à-reductase deficiency
	d. Androgen insensitivity or resistance
	Complete
	Incomplete
	e. Defects in synthesis, secretion, or response to AMH: persistent
	müllerian duct syndrome
	f. Nonendocrine/nonsex chromosome defects
	g. 46, XY true hermaphroditism
	3. 46, XX/46, XY true hermaphroditism
	4. 46,XX
True hermaphroditism	
Female pseudohermaphroditism	a. 46, XX true hermaphroditism
	b. 46, XX sex reversed male
	c. Congenital adrenal hyperplasia
	21-hydroxylase deficiency forms
	11ß-hydroxylase deficiency
	3ß-ol-dehydrogenase deficiency
	d. Aromatase (placental) deficiency
	e. Maternal androgen

Cervix

Detection of Y chromosome by Q banding

Y variants

Y DNA probes

Female genital duct system

Molecular aspects of 21-hydroxylase (P-450_{c21}) deficiency

E. Molecular Aspects of 21-Hydroxylase Deficiency

Activate gene CYP21B and pseudogene CYP21A are located in tandem duplication on chromosome 6 and with 98% homology.

Each gene is 3.3 kb long and has 10 exons.

The two genes are flanked in tandem by the C₄A and C₄B genes which encode the fourth component of complement.

Salt wasting form

1. Homozygous large deletion of CYP21B and C_4B loci: 20% to 25% of classic form.

2. Homozygous large gene conversion resulting from transfer to CYP21B of deleterious mutations normally present in CYP21A pseudogene: 10%.

3. Compound heterozygous harboring, for example, a large deletion on one chromosome 6 and a large gene conversion or a nonsense mutation on the other chromosome 6.

4. The most frequent point mutation is the single base pair change from A to G at the end of intron 2 leading to premature truncation of intron 2 and an mRNA splicing defect preventing synthesis of an active protein.

Single virilizing form

1. Mutation involving change from isoleucine to asparagine. This mutation weakens the association of the enzyme with the endoplasmic reticulum and results in reduction of enzyme activity to about 1% of normal.

2. The A to G point mutation in intron 2 is also associated with the simple virilizing form.

Nonclassic form

1. Valine to leucine mutation at position 281 results in the abnormal localization of the mutant enzyme and in the microsome enzyme activity is reduced by 20% to 50% for the substrates progesterone and 17-OHP. Adequate aldosterone production along with excessive androgen lead to variable degrees of hirsutism or virilization.

2. Proline to leucine mutation at position 30 also leads to improper orientation of the enzyme in the membrane of the microsome. This mutation appears to be associated with more severe biochemical changes as well as androgen excess.

Basic features of 3&beta, -hydroxysteroid dehydrogenase deficiency

D. Basic Features of 3ß-HSD Deficiency

3ß-HSD	Two forms of 3ß-HSD Deficiency
Single protein with both dehydrogenase and isomerase activities,	1. Classic 3ß-HSD deficiency with complete block of 3ß-HSD activity
localized in the endoplasmic reticulum of the cells of the adrenal cortex,	leading to deficient production of glucocorticoids, mineralocorticoids and
ovary, testis, and placenta.	gonadal steroids.
	Inability to produce cortisol results in:
Responsible for conversion of ß ⁵ -3ß-hydroxysteroids (pregnenolone,	-Increased ACTH secretion and adrenal hyperplasia.
17-hydroxypregnenolone, and DHEA) into ß ⁴ -3ß-ketosteroids	
(progesterone, 17-hydroxyprogesterone, and androstenedione).	
	-Males present with ambiguous genitalia owing to insufficient
	production of androgens.
Required for synthesis of cortisol, mineralocorticoids, and gonadal	-Glucocorticoid and mineralocorticoid deficiencies occur, resulting in
steroids.	adrenal insufficiency ? classification into 3ß-HSD/salt wasting and 3ß-
	HSD/salt conserving.
	2. Nonclassic 3ß-HSD with partial block, late onset, no salt wasting, no
	genital ambiguity.

Horseshoe kidney

Basic features of P-450_{scc} (cholesterol side-chain cleavage) deficiency in 46,XY male

B. Basic Features of P-450_{scc} (Cholesterol Side-Chain Cleavage) Deficiency in 46,XY Male

Cholesterol side-chain cleavage enzyme (P-450_{SCC} or 20, 22-desmolase) is a mitochondrial P-450 enzyme.

Catalyses the initial reaction in the steroidogenic pathway in the gonads and adrenals.

Cleaves a 6-carbon side-chain for cholesterol to form pregnenolone, a C₂₁ steroid.

This reaction is rate-limiting

Regulated by ACTH and angiotensin II in the adrenals

Regulated by gonadotropins in the gonads

In P-450_{SCC} deficiency, inability to metabolize cholesterol in the adrenals leads to cholesterol ester deposition resulting in enlarged, yellow, foamy adrenal glands: lipoid adrenal hyperplasia.

Salient features of congenital lipoid adrenal hyperplasia

C. Salient Features of P-450_{SCC} (Cholesterol Side-Chain Cleavage) Deficiency in 46,XY Male: Congenital Lipoid Adrenal Hyperplasia

Karyotype:	46, XY
Inheritance:	Autosomal recessive
Genitalia:	Female ? ambiguous
Wolffian duct derivatives:	Absent ? hypoplastic
Müllerian duct derivatives:	Absent
Gonads:	Testes
Habit us:	Severe adrenal insufficiency in infancy, little or no virilization at puberty
Hormone profile:	? or absent glucocorticoids, mineralocorticoids, and gonadal steroids in
	plasma and urine
	? plasma LH and FSH
Molecular genetics:	CYP11A ₁ , single gene localized to chromosome 15q23-24, 9 exons, 8
	introns
	No mutations found

Salient features of 3&beta, -hydroxysteroid dehydrogenase deficiency in 46,XY males

E. Salient Features of 3ß-HSD Deficiency in 46,XY Males

Karyotype: 46, XY Inheritance: Autosomal recessive	
Inheritance: Autosomal recessive	
Genitalia: Almost normal female to male with degrees of hypospadias	
Wolffian duct derivatives: Normal	
Müllerian duct derivatives: Absent	
Gonads: Testes	
Habitus: Severe adrenal insufficiency in infancy; poor virilization at puberty gynecomastia. Mild form: no mineralocorticoid deficiency, prematu adrenarch ? mild virilization	with ıre
Hormone profile: Phormone profile: P_{21} and C_{19} steroids (<i>eg</i> , 17- hydroxypregnenolone, DHEA, and their sulfates) in urine and plase	ma
? ratio of δ^5/δ^4 steroids	
? 17-hydroxypregnenolone and DHEA response to ACTH and/or h	nCG
Molecular genetics: 17-hydroxypregnenolone and DHEA suppressible by dexamethas	one
Two isoenzymes 3ß-HSD type I and type II	
Type I expressed in placenta and skin	
Type II expressed in adrenal, ovary, and testis	
Genes: localized to chromosome 1q11-13, with 93% homology	
Mutation reported in fourth exon of type II gene, codon 171 conver tryptophan to stop codon leading to formation of a truncated	rting
nonfunctional enzyme	

Features of androgen resistance or insensitivity

B. Basic Features of Androgen Resistance or Androgen Insensitivity

Testosterone and its reduced metabolite DHT effect their action in androgen-sensitive target cells by binding to androgen receptor. Androgen receptor is a member of a family of regulatory proteins which include all steroid receptors, and receptor for thyroid hormone, vitamin D, and retinoic acid. These receptors contain (1) NH₂-terminal region involved in transcription activation; (2) cysteine-rich DNA binding with two zinc fingers that bind to specific androgen response elements in target genes and; (3) COOH-terminal ligand binding domain for testosterone and DHT. Androgen response may be completely or partially blocked in 46,XY males, resulting in absent or partial development of Wolffian ducts and absent or partial development of male external genitalia during fetal development. Because testes produce AMH, müllerian ducts regress leading to absent female internal genital structures.

Androgen resistance

18y old "female"

Tanner IV breast

Absent Pubic hair

Blind vagina

46,XY

46,XX "sex-reversed male"

46,XX karyotype reversed male

B. 46,XX Sex Reversed Male

46, XX
Sporadic
Rare kindred including both XX males and XX true hermaphrodites
Male
Hypospadias (10%)
Normal
Absent
Testes
Normal male, slightly shorter than normal males. Few develop gynecomastia at puberty, owing to hypogonadism; those born with hypospadias tend to develop gynecomastia at puberty. All have azoospermia.
Testosterone normal or decreased FSH; LH normal or low
90% result from transfer of SRY from Y to X during paternal meiosis 10% result from mutation of X-linked or autosomal genes involved in gonadal determination